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The intermittency of turbulent energy dissipation is often analyzed in terms of a product of random multi-
pliers, each multiplier being the total dissipation in a subintervalr divided by the total dissipation in an interval
lr . Recent experimental data of Pedrizzetti, Novikov, and Praskovsky@Phys. Rev. E53, 475 ~1996!# give
extensive information on the statistics of these multipliers. In this paper we further analyze these statistics, with
emphasis on the universal scaling exponents. We emphasize that the scaling exponents are sensitive to the
location of the subinterval within the interval and that they reflect dependence of successive multipliers. We
show that these two sensitivities are related and strongly limit the direct applicability of multiplier statistics to
the statistics of the turbulent energy dissipation. We extend Novikov’s@Phys. Rev. E51, R3303~1994!# ‘‘gap
theorem’’ on the high moments of the multiplier to the case when the multipliers are statistically dependent and
discuss its relevance to the high moments of the turbulent energy dissipation.@S1063-651X~96!09111-8#

PACS number~s!: 47.27.Gs, 05.40.1j

I. INTRODUCTION

The intermittency of the turbulent energy dissipation has
been the object of intense study since Kolmogorov@1# first
suggested that the relevant scaling variable is the local en-
ergy dissipation averaged over an inertial range interval of
lengthr . He further proposed that this variable should have a
log-normal distribution. Developments in this area until 1994
have been reviewed by Nelkin@2#. A log-normal distribution
is a natural approximate consequence of a random multipli-
cative process. This connection was made explicit by Ya-
glom in 1966@3#, who introduced the multipliers as the ratio
of the averaged dissipation in an intervalr to the average
dissipation in an intervallr , wherel.1. In an important
paper, Novikov @4# ~see also@5,6#! developed a general
framework for scale similarity of the random multipliers and
pointed out that there are serious mathematical inconsisten-
cies in assuming a limit log-normal distribution. Van Atta
and Yeh@7#, and later Chhabra and Sreenivasan@8#, showed
that scale similarity was approximately valid experimentally.

In all of the above works, it is either explicitly or implic-
itly assumed that the scaling properties of the random mul-
tipliers are essentially the same as the scaling properties of
the averaged dissipation. It is frequently also assumed that
the scaling properties of velocity differences in the inertial
range can be simply related to the scaling properties of the
averaged dissipation through Kolmogorov’s refined similar-
ity hypotheses@1#. In the present paper, we critically exam-
ine the connection between the multipliers and the dissipa-
tion. We have nothing new to say about the refined similarity
hypotheses and thus draw no new conclusions about the scal-
ing properties of velocity differences.

Recently there has been renewed interest in this subject.
This was stimulated by Novikov’s@9# proof that the asymp-

totic behavior of scaling exponents for high-order moments
of the locally averaged energy dissipation rate is restricted if
the probability density function~PDF! of the multiplier has
no gap for large values corresponding to the most intense
events. He suggested that the behavior of high moments in
the popular She-Leveque model@10# is inconsistent with the
absence of such a gap. Nelkin@11# pointed out that different
models with totally different asymptotic behavior for scaling
exponents cannot be distinguished experimentally.

Recently, Pedrizzetti, Novikov, and Praskovsky@12#
~PNP! have investigated the statistical properties of the mul-
tipliers in much more detail than previously. The present
paper is, in large part, a further analysis of the Pedrizzetti-
Novikov-Praskovsky results. Our main conclusion is that the
connection between the multipliers and the dissipation is
complex, and that care has to be exercised when the scaling
exponents derived from one are applied to the other. Thus,
although Novikov’s gap theorem is correct, it cannot be ap-
plied directly to the scaling exponents for the dissipation.

In Sec. II, we define the multipliers. In Sec. III we discuss
the fact that the observed scaling exponents depend strongly
on where the subinterval of sizer is located within the in-
terval of sizelr . In Sec. IV, we examine deviations from
scale similarity due to statistical dependence of the multipli-
ers. We find that the Pedrizzetti-Novikov-Praskovsky data
also gives large effects here. All of these considerations sug-
gest that there is no simple connection between the statistics
of the multipliers and the statistics of the dissipation. In Sec.
V, we argue, however, that it is no accident that the case
whenl52 andD51/2 gives exponents closest to those ob-
served for the dissipation. In Sec. VI, we look at higher
moments, and the relevance of Novikov’s gap theorem to
high moments of the dissipation. Finally, in Sec. VII, we
summarize our conclusions.

II. MULTIPLIERS AND ENERGY DISSIPATION

Consider a non-negative random fielde(x), which we call
the rate of energy dissipation, but which is, in practice, the
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one-dimensional surrogaten(]u/]x)2, whereu(x,t) is the
instantaneousx component of the velocity. Introduce the to-
tal dissipationE(r ,x) in the interval of lengthr centered on
x,

E~r ,x!5r e r~x!5E
x2r /2

x1r /2

e~s!ds. ~1!

Consider two segments of lengthr andlr , l.1, embedded
one inside the other, and define the multiplier as

M ~r ,l,D!5
E~r ,x!

E~lr ,x8!
<1, ~2!

where the inequality in~2! derives from the non-negativity of
the underlying fielde(x) and the parameterD, defined by

D5
x2x8

lr2r
~3!

represents the relative displacement of the two segments.
D511/2 corresponds to the rightmost inner segment, while
D50 means that the segments are centered at the same
point. In the above we have followed the notation of PNP
with the exception that their breakdown coefficientq is just
l times our multiplierM . If the statistics of the multiplier are
universal, then they should be independent ofr whenr is an
inertial range scale. The dependence of these statistics on the
scale ratiol and the inhomogeneity parameterD is the prin-
cipal focus of this paper.

Perhaps the most important result in the theory of multi-
pliers establishes@12# that a necessary and sufficient condi-
tion for the moments ofM to scale as powers ofl ~i.e., for
scale similarity!,

^@M ~r ,l,D!#p&5lg~p,D!, ~4!

is that ~i! the PDF ofM (r ,l,D), P(M ;r ,l,D), is indepen-
dent of r and ~ii !

^M ~r ,l1l2 ,D!p&5^M ~r ,l1 ,D!p&^M ~rl1 ,l2 ,D!p&.
~5!

In Eq. ~4!,

g~p,D!5m~p,D!2p ~6!

and the exponentsm(p,D) are those defined by PNP. If strict
scale similarity applies, then the exponentsg(p,D) and
m(p,D) defined by~4! and~6! should be independent of the
scale ratio. We consider this question further in Sec. IV.

If conditions~i! and~ii ! above hold and the fluctuations in
the dissipation averaged over a large scaleL are relatively
small ~a reasonable and customary assumption!, then one
expects that the scaling exponents defined by the multipliers
and those defined by the dissipation should be the same. As
the scaling exponents for the dissipation must be indepen-
dent of D, we conclude that under these assumptions
m(p,D) should be independent ofD. Let us justify this last
statement. In each realization of an ensemble of turbulent
flows, we measureE(x,r ) at a fixedx and all the multipliers
having a fixedD andl that connect a mother interval~fixed
in space! at scaleL with the daughter interval on which

E(x,r ) is defined. Each of theE(x,r ) participating in the
ensemble will have been produced by an array of multipliers

E~r !

E~L !
5M ~L/l,D!M ~L/l2,D!•••M ~L/ln,D!. ~7!

Raising Eq.~7! to the powerp and taking averages over the
ensemble, one finds

^E~r !p&
E~L !p

5^M ~L/l,D!pM ~L/l2,D!p•••M ~L/ln,D!p&.

~8!

Equation~8! is correct by construction and entails no contra-
diction. If now weassumethe validity of conditions~i! and
~ii !, then, as Novikov has shown, the scaling of the moments
of M is ensured, that is,^M (l,D)p&5lg(p,D), and we are led
to the conclusion that

^E~r !p&
E~L !p

5lg~p,D!, ~9!

which, given that the moments ofE(x,r ) are independent of
D, can be true only ifg(p,D) is D independent@13#.

The recent data of PNP, however, show that the value of
m(2,D) is very sensitive to the parameterD. Forl52, their
value ofm(2,1/2) is 0.15, butm(2,0) is only 0.05.~We thank
Gianni Pedrizzetti for sending us the numerical input data for
Fig. 7 of PNP and the corresponding data forD51/2, which
is not explicitly given in the published paper.! This qualita-
tive effect is clearly seen in Fig. 10 of PNP, but we empha-
size here that the effect is very large when expressed in terms
of the scaling exponents. We were surprised to find the effect
so large, so we examined the data of Sreenivasan and Stolo-
vitzky used in@14# and found an effect of similar magnitude.

It follows from the previous discussion that either condi-
tion ~i! or ~ii ! above must be violated@for if they held,
g(p,D) should beD independent#. In fact it was shown in
@14# that multipliers at subsequent scales are not independent
@were they independent, condition~ii ! would obtain# and the
direct violation of condition~ii ! was established by PNP.
Strict scale similarity is thus ruled out. Further, the depen-
dence of the scaling exponents of the multipliers onD makes
the connection between these exponents and the ones corre-
sponding to dissipation even more tenuous. This suggests
that the theory of multipliers is not as useful as once thought
to explain the statistics of the dissipation.

To what extent can the theory of multipliers be used to
explain issues regarding the dissipation? We shall see that
there are situations in which the multipliers are useful tools,
even though in these cases the argument is less direct than it
would be if condition~ii ! were fulfilled. One such situation is
described in Sec. V in relation to the intermittency exponent.
But first we discuss a few properties of multipliers.

III. FURTHER PROPERTIES OF THE MULTIPLIERS

In spite of the inability of the multipliers to describe sev-
eral aspects of the dissipation statistics, the theory of multi-
pliers is interesting in itself, both in the context of turbulent
flows and in the context of stochastic processes in general.
Thus it is worth understanding physically some of its prop-
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erties, such as the statistical dependence of the multipliers,
on the one hand, and theD dependence, on the other hand.
We shall also show in this section that there is a relation
between these two properties.

Let us first concentrate on the dependence between mul-
tipliers. In Ref.@14# it was shown from atmospheric turbu-
lence data that forl52 anduDu51/2 ~denoted in what fol-
lows byD561/2) a systematic statistical dependence exists
betweenM (r ,2,61/2) andM (2r ,2,61/2). @For clarity in
the notation, we keep track of the scale in the multiplier
through the first argument inM (r ,l,D), even though as dis-
cussed in@14# the multiplier distribution is independent of
r at the scales considered.# Specifically, the conditional PDF
P„M (r ,2,61/2)uM (2r ,2,61/2)… for 0<M (2r ,2,61/2)
<1/2 is narrower ~has a smaller variance! than for
1/2<M (2r ,2,61/2)<1. This dependence is related to the
more physical dependence ofM (r ,2,61/2) onE(2r ,x), the
latter being the total dissipation in the parent segment of
length 2r . One interesting feature noticed in@14# is that the
conditional PDF ofM (r ,2,61/2) givenE(2r ,x) tends to-
wards an asymptotic form for high values ofE(2r ,x). Even
though this feature was shown to hold experimentally only
for uDu51/2 andl52, one can argue that this trend should
be valid for arbitraryD andl. An explanation for this can be
given in terms of a similarity argument. Consider the condi-
tional momentŝ M (r ,l,D)quRer& of the multipliers given
the local Reynolds number Rer5rE(r ,x)1/3/n. It is reason-
able to expect that for a givenr , this statistics has to be
universal~independent of viscosity! for sufficiently large lo-
cal Reynolds number and therefore the Rer dependence has
to subside. But for a fixed scale, the local Reynolds number
depends only onE(r ,x), and we conclude that theE(r ,x)
dependence has to disappear when this quantity assumes
large values. This feature of the multipliers is important in
the analysis of the asymptotics of the scaling exponents of
high-order moments of the dissipation, as will be seen in
Sec. VI. An experimental assessment of this conjecture will
have to await further work. The statistical dependence be-
tween multipliers was also demonstrated for the caseD50
by PNP.

Let us now turn to theD dependence of the multipliers.
This dependence was originally proposed by Novikov@4#,
who also explained its physical origin. Novikov’s argument
is worth recalling. Consider an interval of length 3r centered
at x. The total dissipation in such interval is

E~3r ,x!5E~r ,x2r !1E~r ,x!1E~r ,x1r !. ~10!

Since the dissipation autocorrelation function is observed
@15# to decay monotonically with separation distancer , it
follows that

^E~r ,x2r !E~r ,x!&.^E~r ,x2r !E~r ,x1r !& ~11!

and therefore

^E~3r ,x!E~r ,x!&.^E~3r ,x!E~r ,x2r !&. ~12!

Recalling that

E~r ,x2r !5M ~r ,3,21/2!E~3r ,x! ~13!

and

E~r ,x!5M ~r ,3,0!E~3r ,x!, ~14!

we obtain from the previous inequality that

^M ~r ,3,21/2!E~3r ,x!2&.^M ~r ,3,0!E~3r ,x!2&, ~15!

from which it follows naturally that the statistics of
M (r ,3,21/2) andM (r ,3,0) are different, that is, there is a
D dependence.

It is interesting to observe that any multiplier correspond-
ing to a givenD can be factorized as the product of two
multipliers corresponding toD561/2. To perform this de-
composition we introduce an intermediate stage in going
from the big interval of lengthlr to the smaller interval of
lengthr . For the intermediate interval, the right extreme co-
incides with the right extreme of the large segment and the
left extreme coincides with the left extreme of the small in-
terval. This intermediate segment has a lengthl1r , where

l15@~l11! 122~l21!D#. ~16!

Then the multiplier linking the largest segment with the
smallest one can be written as the product of the multiplier
linking the largest segment and the intermediate one times
the multiplier linking the intermediate segment with the
smallest one. The first multiplier corresponds toD51/2,
while the second one corresponds toD521/2. Therefore
one can in general write

M ~r ,l,D!5M ~l1r ,l/l1,1/2!M ~r ,l1 ,21/2!. ~17!

~It is clear that a similar factorization can be achieved if we
go first to the left and then to the right.! Let us now assume
that M (l1r ,l/l1 ,61/2) andM (r ,l1 ,61/2) are indepen-
dent. Raising Eq.~17! to the powerp, taking averages, using
the independence between multipliers, assumption~i! of Sec.
II, and local isotropy~which ensures that the statistics of
D51/2 andD521/2 are the same!, we obtain that

^M ~r ,l,D!p&5lg~p,1/2! ~18!

for any p, which shows that the moments ofM (r ,l,D) and
M (r ,l,1/2) are the same for anyD and any scale. The un-
avoidable conclusion is that independence between multipli-
ers implies independence ofD.

The picture that emerges is that dependence between mul-
tipliers and dependence onD are linked. Since theD depen-
dence was shown to be expected from Novikov’s arguments
given above, it follows that a dependence between multipli-
ers is to be expected. Furthermore, as discussed in Sec. II, a
dependence between multipliers implies the breakdown of
scale similarity.

IV. DEVIATIONS FROM SCALE SIMILARITY

If the scaler is in a universal inertial range, the moments
of the multipliers do not depend onr , but dependence among
the multipliers may lead to a deviation from scale similarity.
To express this deviation, we generalize Eq.~4! to

^@M ~r ,l,D!#p&5lg~p,l,D!, ~19!
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where

g~p,l,D!5m~p,l,D!2p, ~20!

and the exponentsm(p,l,D) are the same as given by PNP.
The observed variation of these exponents with scale ratio
l for D50 is given in Fig. 7 of PNP. Using the same data
set, we calculated the generalized dimension

D~p,l,D!512
m~p,l,D!

p21
~21!

as a function ofp for various values ofl whenD51/2. A
significant dependence on scale ratio is observed for all val-
ues ofp.

First we ask if this observed dependence is consistent
with earlier published results. One of the tests done in the
past regarding scale similarity was the check that the multi-
plier PDF forl52 did not depend on scale@14#. While this
seems to be the case to a good approximation for inertial
range scales, the strict scale similarity represented by Eq.~4!
demands more stringent tests. Chhabra and Sreenivasan@8#
studiedD(p,l) for several values ofl. They were able to
extract a scale ratio independentf (a) from their data, but
they did this by adding ap-dependent prefactor to Eq.~19!.
Their curves forD(p,l) before this prefactor was extracted
look qualitatively similar to those we obtained from the data
of PNP @18#. The use of ap-dependent prefactor is equiva-
lent to assuming a particular functional form for the depen-
dence of the scaling exponents on scale ratio. It does not
eliminate the deviations from scale similarity.

We next ask if there is any simple physically based way
to model the dependence of the exponents on scale ratio.
PNP have given an accurate empirical fit in whichg is a
linear function of ln@ln(l)#. An alternative possibility is that
the dependence on scale ratio vanishes when the scale ratio
becomes large. From Figs. 7~a! and 8~b! of @12# it is seen that
the dependence ofm(p,l,0) onl does not vanish for large
values ofl. The corresponding data form(p,l,1/2) @19#
show a similar behavior. The dependence onD remains
strong even for large values ofl, however, and the expo-
nents bear no simple relation to those for the dissipation.
Thus, though it is tempting to assume that the statistics of the
multipliers approaches the statistics of the dissipation when
the scale ratio is large, there is no experimental information
to support this assumption.

After having reviewed and presented some different ma-
terial on properties of the multipliers, we now describe a few
cases where one can establish a relation between the statis-
tics of multipliers and that of the dissipation.

V. INTERMITTENCY EXPONENT

Since the work of Kolmogorov@1#, the parameter used as
the signature of small-scale intermittency is the so-called in-
termittency exponentm, defined by

^E~r ,x!2&5^e&2~r /L !22m. ~22!

The experimental situation for this exponent has been re-
viewed by Sreenivasan and Kailasnath@15#, and the value of
m is typically about 0.25. Under the assumptions~i! and~ii !

of Sec. II, one can compute this exponent from the theory of
multipliers. It is worth recalling how this is done. As seen
before, the assumption of independence makes the statistics
of the multipliers independent ofD. Let us choose a scale
ratio l and writeE(r ), wherer5L/lk as a telescopic prod-
uct of multipliers:

E~r ,x!5E~L,x8!M ~L/l,l!M ~L/l2,l!•••M ~L/lk,l!.
~23!

Raising Eq.~23! to the powerp, using independence and
scale similarity, and taking averages one finds that

^E~r ,x!p&5~L^e&!p^M ~r ,l!p&k

5~L^e&!p~r /L !2 logl^M ~r ,l!p&, ~24!

where we have used thatE(L,x8)5LeL(x8)'L^e&. Com-
paring Eq.~24! with Eq. ~22!, we find that the intermittency
exponent is given by

m521 logl^@M ~r ,l!#2&. ~25!

Most measurements ofm from the multipliers have been for
l52 and D51/2. Until recently these have also given
m'0.25. However, as mentioned in Sec. II, the recent data
of PNP show that the value ofm from Eq. ~25! is very
sensitive to the parameterD. For l52, their value of
m(2,1/2) is 0.15, butm(2,0) is only 0.05. The ‘‘universal’’
intermittency exponent obtained from the multipliers is much
smaller when the subinterval is centered on the larger inter-
val than when it is at the end of the interval. This can be
understood on the basis on the following nonrigorous argu-
ment. One would like to show, for example, that the variance
of M (r ,2,21/2) is greater than the variance ofM (r ,2,0).
This would be ensured if one shows that such is the case for
the conditional second moment given the dissipation in the
parent interval. To do this consider an interval of length 4r
centered onx and divide this interval into four subintervals
of length r centered onx23r /2, x2r /2, x1r /2, and
x13r /2. The multiplier forD521/2 corresponds to the sum
of the first two subintervals and the multiplier forD50 cor-
responds to the sum of the second and third subintervals. The
difference in the mean-square multipliers for these two cases
is given by

K SE~r ,x23r /2!1E~r ,x2r /2!

E~4r ,x! D 2UE~4r ,x!L
2 K SE~r ,x2r /2!1E~r ,x1r /2!

E~4r ,x! D 2UE~4r ,x!L . ~26!

If we expand the above expression and add and subtract the
dissipation in the fourth subinterval, the desired inequality
can be rewritten in the form
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1

E~4r ,x!
@^E~r ,x23r /2!uE~4r ,x!&

2^E~r ,x1r /2!uE~4r ,x!&#

1
1

E~4r ,x!2
@^E~r ,x23r /2!E~r ,x2r /2!uE~4r ,x!&

2^E~r ,x2r /2!E~r ,x1r /2!uE~4r ,x!&#

1
1

E~4r ,x!2
@^E~r ,x1r /2!E~r ,x13r /2!uE~4r ,x!&

2^E~r ,x23r /2!E~r ,x13r /2!uE~4r ,x!&#.0.

~27!

The difference in the first set of square brackets is likely to
be close to zero, as is the difference in the second set of
square brackets, the latter because they are correlations be-
tween nearest neighbors. However, the difference in the third
set of square brackets is most likely to be positive because it
is the difference between the correlation of nearest neighbors
and second-nearest neighbors. If this is the case, the direction
of the previous inequality is justified and therefore the vari-
ance of M (r ,2,21/2) is greater than the variance of
M (r ,2,0).

Now, why is the intermittency exponent computed from
the multipliers corresponding toD51/2 so suspiciously
close to them measured directly, whereas the caseD50
gives a result that is quite different? We now show that there
are strong reasons why the caseD51/2 is the one that gives
the result closest to the one computed from the dissipation.
Noting that@16#

^e~x1r !e~x!&5
1

2

d2

dr2
^E~r ,x!2& ~28!

and using~22!, it is clear that the intermittency exponent
determines the correlation betweene(x1r ) and e(x)
through

^e~x1r !e~x!&5A^e&2S rL D 2m

, ~29!

where A5(22m)(12m)/2. It can be easily shown from
Eqs.~1! and ~29! that

^E~r ,x2 l /2!E~ l ,x1r /2!&

5
A

~22m!~12m!
~L^e&!2

3F S r1 l

L D 22m

2S lL D 22m

2S rL D 22mG . ~30!

On the other hand, given that

E~r1 l ,x!5E~r ,x2 l /2!1E~ l ,x1r /2! ~31!

and

E~r ,x2 l /2!5M ~r ,l,21/2!E~r1 l ,x!, ~32!

wherel5(r1 l )/r as usual, we obtain

^E~r ,x2 l /2!E~ l ,x1r /2!&

5^@M ~r ,l,21/2!2M ~r ,l,21/2!2#E~r1 l ,x!2&. ~33!

Assuming only at this point that M (r ,l,21/2) and
M (r ,l,21/2)2 are not correlated withE(r1 l ,x), we obtain
from Eq. ~33! that

^E~r ,x2 l /2!E~ l ,x1r /2!&

5~L^e&!2S r1 l

L D 22m

@^M ~r ,l,21/2!&

2^M ~r ,l,21/2!2&#. ~34!

Using that^M (r ,l,21/2)&51/l @valid under the assump-
tion of decorrelation between M (r ,l,21/2) and
E(r1 l ,x)# and equating Eqs.~30! and ~34!, we obtain

^M ~r ,l,21/2!2&5
1

l
2
1

2
1
1

2 F S 12
1

l D 22m

1S 1l D 22mG ,
~35!

which coincides with Eq.~25! only for l52. Stated briefly,
the only scale ratio for which the intermittency exponent can
be found without contradictions isl52 andD51/2, which
is the reason why the intermittency exponent computed for
these values ofl andD is close to the one computed directly
from the dissipation.

VI. BEHAVIOR OF HIGH MOMENTS

One of the important results of@9# and PNP concerns the
asymptotic behavior of the scaling exponentsm(p,D) for
large values ofp, which will be called here Novikov’s gap
theorem. For completeness, let us rederive this theorem for
the multipliers ~as opposed to for the breakdown coeffi-
cients!. Our starting point is the definition of the scaling
exponents for the multipliers@see Eq.~4!#

g~q,D!52 logl^M ~r ,l,D!q&

52 loglF E
0

1

M ~r ,l,D!qP~M ;r ,l,D!dMG .
~36!

Now assume that there is a gap in the multiplier distribution,
that is,

E
m

1

P~M ;r ,l,D!dM50, ~37!

where 0,m,1. Then, from Eq.~36! one finds that

g~q,D!>qlogl~1/m! ~38!

and

j[ lim
q→`

g~q,D!

q
> logl~1/m!.0. ~39!

However, if there is no gapm51 and one has
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0<j< lim
q→`

S 2
1

qD loglF ~m* !qE
m*

1

P~M ;r ,l,D!dMG
5 logl~1/m* ! ~40!

for anym* . Thusj50.
If the multipliers were independent at successive scales,

then the previous result would imply that, if there is no gap
~as the experimental evidence suggests!,

lim
q→`

logr /L@^E~r ,x!q&/~L^e&!q#

q
50. ~41!

This is Novikov’s result@9#, which purports to show that the
She-Leveque model@10# is inconsistent with experiment, as
it predicts that the right-hand side of~41! is 1/3 instead of
0. However, as we have seen, the multipliers are dependent,
and this obscures any inference from the world of multipliers
to that of dissipation.

In order to take into account these cumbersome depen-
dences, it is necessary to use conditional statistics. Basically,
we are interested in the ratio^E(r ,x)q&/^E( l ,x)q&, which can
be rewritten in terms of the multipliers as

^E~r !q&

^E~ l !q&
5

1

^E~ l !q& KE~r !q

E~ l !q
@E~ l !q#L

5
1

^E~ l !q& K KE~r !q

E~ l !q UE~ l !LE~ l !qL . ~42!

For the remainder of this section we suppress the second
argument inE(r ,x) for notational simplicity since it plays no
role. We recognize in the previous equation that
E(r )/E( l )5M (r ,l /r ,D). Therefore we have that

^E~r !q&

^E~ l !q&
5E

0

`

^M ~r ,l /r ,D!quE~ l !&D„E~ l !…
E~ l !q

^E~ l !q&
dE~ l !,

~43!

whereD„E( l )… is the PDF ofE( l ). We are interested in the
limit of q tending tò . In this limit, the kernel of the integral

Q„E~ l !,q…5D„E~ l !…E~ l !q/^E~ l !q& ~44!

can be interpreted as a PDF since it is positive and integrates
to 1. It selects increasingly large values ofE( l ) as q be-
comes larger. On the other hand, it is found from the analysis
of experimental data@14# that the conditional distribution of
M (r ,2,61/2), given E( l ), becomes independent ofE( l )
when this quantity is large enough. As we discussed in Sec.
III, a similarity argument suggests the conjecture that the
same result should hold valid for arbitraryl andD, namely,
that the statistics ofM (r ,l,D), givenE( l ), becomes inde-
pendent ofE( l ) for sufficiently largeE( l ). Therefore, asq
increases, Eq.~43! tends to

^E~r !q&/^E~ l !q&5^M ~r ,l /r ,D!quE~ l !&@ l ^e&. ~45!

~Notice that we have used that^MquE& tends to be indepen-
dent ofE for largeE.! Now, we have seen when we dis-
cussed Novikov’s gap theorem in the beginning of this sec-
tion that for a random variableM bounded between 0 and

1 and whose distribution has no gap,^Mq&;lg(q), with
g(q)/q→0 for high q. This means that if̂Mq& scales with
l, this scaling is at most sublinear. Therefore, recalling that
E(r )5r e r @see Eq.~1!#, it follows from ~45! that the asymp-
totic behavior of̂ e r

q&/^e l
q& for sufficiently largeq should be

^e r
q&

^e l
q&

5S lr D
q

^M ~r ,l,D!quE~ l !→`&;lg~q!2q ;
q@1

l2q.

~46!

This line of argument leads to basically the same conclusion
reached by Novikov, namely, the scaling of^e r

q&;r2q, and
not to ^e r

q&;r2hq with 0,h,1 as proposed for example in
the phenomenology of She and Leveque@10#. The previous
line of reasoning has a caveat, however. In Eq.~45!, the
left-hand side is independent ofD, whereas the right-hand
side is not, at leasta priori. In order for our reasoning to be
consistent, one should have that^M (r ,l /r ,D)qu l e l(x)&
@ l ^e& be independent ofD for sufficiently largeq. This is a
prediction that has to be checked experimentally. In any
case, it is interesting to notice that this independence, if true,
would imply some constraints on the structures responsible
for the most intense events.

VII. DISCUSSION AND CONCLUSIONS

We have reviewed the statistical properties of the random
multipliers under conditions of strict scale similarity. We
started from the observation of PNP@12# that these proper-
ties are sensitive to the parameterD, which describes the
position of the subinterval of lengthr in the larger interval of
lengthlr . This observation is in agreement with the original
suggestion by Novikov@4#, which we have reviewed in Sec.
III. We then pointed out that this dependence onD strongly
suggests that the multipliers for successive cascade steps
must be statistically dependent, thus violating the conditions
of strict scale similarity. In Sec. IV, we reviewed the direct
evidence for deviations from strict scale similarity and
pointed out that this evidence is not in conflict with earlier
experiments.

In Sec. V, we examined the evidence on the ‘‘universal’’
intermittency exponentm and gave a physical argument in
support of the observation that this exponent should be
smaller forD50 when the subinterval is centered on the
larger interval than forD51/2, when it is at one end of the
larger interval. We also suggested that it is no accident that
earlier measurements forD51/2 andl52 gave a value of
m from the multipliers close to that observed directly from
the statistics of the turbulent energy dissipation. In Sec. VI,
we considered the behavior of high moments of the multi-
plier and the corresponding asymptotic behavior of the scal-
ing exponents. We started from the observation@14# that the
PDF of the multiplier, conditioned on the total dissipation in
the parent interval, appears to be independent of this total
dissipation when this quantity becomes large. From this ob-
servation, we were able to extend Novikov’s ‘‘gap theorem’’
@9# to the case when the multipliers are statistically depen-
dent. This theorem constrains the behavior of the scaling
exponents of the multipliers to increase less rapidly than lin-
early at high orders.

Although the statistics of the multipliers remain an inter-
esting universal inertial range property of high Reynolds
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number turbulence, the arguments that we have given sug-
gest that they bear no simple relation to the statistics of the
local dissipation. In particular, we have shown that the de-
viations from strict scale similarity, observed by PNP@12#,
are to be expected theoretically. These deviations suggest
that the application of the theory of infinitely divisible dis-
tributions to the multipliers by Novikov@9# is not appropriate
since this theory assumes independence between multipliers.
We also suggested that Novikov’s gap theorem, which is
correct for the multipliers, cannot easily be extended to the
dissipation~or to the moments of velocity differences! with-
out some subtle precautions. If our conjecture~based on
some experimental data and a similarity argument! that
^M (r ,l,D)quE( l )& tends to be independent ofE( l ) for high
values ofE( l ) holds, Novikov’s suggestion that his gap theo-
rem constrains popular models@10# for the scaling of the
moments of the dissipation remains valid.

What is the connection between our results and the usual
multifractal description of turbulent dissipation@17#? As dis-
cussed, for example, in@2#, the multifractal picture follows
naturally from a multiplicative random process of indepen-
dent multipliers. Thus, from the knowledge of the multiplier
PDF and the assumption of independent, scale invariant
multipliers, the multifractal spectrum can be easily derived.
However, we discussed in Sec. III that the multipliers are not
independent and then it is not at all clear which of the prop-
erties of the multifractal spectrum derived from the assump-

tion of independence survive. This issue was considered in
Ref. @14#, where it was suggested that the nature of the de-
pendence is such that only the region of the multifractal
spectrum related to the negative moments of the dissipation
is expected to differ noticeably from the equivalent region of
the spectrum computed assuming independence. On the
other hand, the part of the spectrum associated with the posi-
tive moments computed from the multiplier PDF assuming
independence is expected to coincide with the spectrum
computed directly, without the use of multipliers. It is in this
latter sense that the dependence between multipliers was
deemed benign in Ref.@14#. Finally, it is worth emphasizing
that it might be possible to generate a multifractal spectrum
without an underlying random multiplicative process, and
even if such a process exists, it need not be characterized by
the type of multipliers that we have studied here. Thus even
though the ‘‘classical’’ description of scale similar multipli-
ers has severe limitations, these limitations do not preclude
the validity of the multifractal picture of turbulent energy
dissipation.
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