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The intermittency of turbulent energy dissipation is often analyzed in terms of a product of random multi-
pliers, each multiplier being the total dissipation in a subintengiliided by the total dissipation in an interval
\r. Recent experimental data of Pedrizzetti, Novikov, and PraskoBkys. Rev. E53, 475 (1996)] give
extensive information on the statistics of these multipliers. In this paper we further analyze these statistics, with
emphasis on the universal scaling exponents. We emphasize that the scaling exponents are sensitive to the
location of the subinterval within the interval and that they reflect dependence of successive multipliers. We
show that these two sensitivities are related and strongly limit the direct applicability of multiplier statistics to
the statistics of the turbulent energy dissipation. We extend NoviK&hHys. Rev. 51, R3303(1994)] “gap
theorem” on the high moments of the multiplier to the case when the multipliers are statistically dependent and
discuss its relevance to the high moments of the turbulent energy dissid&if63-651X96)09111-9

PACS numbdis): 47.27.Gs, 05.46:j

[. INTRODUCTION totic behavior of scaling exponents for high-order moments
of the locally averaged energy dissipation rate is restricted if
The intermittency of the turbulent energy dissipation haghe probability density functiofPDF) of the multiplier has
been the object of intense study since Kolmogofbl/first O gap for large values corresponding to the most intense
suggested that the relevant scaling variable is the local ergvents. He suggested that the behavior of high moments in
ergy dissipation averaged over an inertial range interval of’€ Popular She-Leveque mod@D] is inconsistent with the
lengthr . He further proposed that this variable should have g°Sénce of such a gap. NelKiii] pointed out that different
log-normal distribution. Developments in this area until 1994mOOIeIS with totally dn‘fe_re_nt asymptotic be_hawor for scaling
have been reviewed by Nelkj2]. A log-normal distribution ex;l)qonentsl Ca?:n%t .be d|§t|nl\?U|§|£1ed expgnrgentslly. 5
is a natural approximate consequence of a random multipli- ecently, Pedrizzett, Novikov, an ras ovsky2]
cative process. This connection was made explicit by ya!PNP have investigated the statistical properties of the mul-

glom in 1966[ 3], who introduced the multipliers as the ratio t|p||ers_ |n'much more detail than prev!ously. The pfese”.‘
of the averaged dissipation in an intervato the average P2PeTIS. I large part, a further analysis of the Pedrizzetti
dissipation in an intervakr, where>1. In an important Novikov-Praskovsky results. Our main conclusion is that the

paper, Novikov[4] (see also[5,6]) developed a general connelctlon Zettr\]/vcien th(fa] mLtJ|tIE|IeI‘S an_d Ejhe hdISS;[IE])atIOI’] I_ls
framework for scale similarity of the random multipliers and complex, and that care has o be exercised when the scaling

pointed out that there are serious mathematical inconsisteﬁ-ﬁﬁoneﬂtil dgzvefj from tﬁne are .apphed tto {he Oth?rb Thus,
cies in assuming a limit log-normal distribution. Van Atta atthough NovIKov's gap theorem IS correct, it cannot be ap-
and Yeh[7], and later Chhabra and Sreeniva&ah showed plied directly to the_scallng exponents for the d|SS|pa_t|0n.
that scale similarity was approximately valid experimentally. In Sec. I, we define the mulypllers. In Sec. Il we discuss

In all of the above works, it is either explicitly or implic- the fact that the ot_)served sca!mg_ exponents _de_pend s_trongly
itly assumed that the scaling properties of the random mul®" where the subinterval of sizeis located within the in-

tipliers are essentially the same as the scaling properties (T)?rval of sizexr. In Sec. IV, we examine deviations from

the averaged dissipation. It is frequently also assumed thz§'tCale simi]arity due to statis'tical erendence of the multipli-
the scaling properties of velocity differences in the inertial €S- We find that the Pedrizzetti-Novikov-Praskovsky data

range can be simply related to the scaling properties of th@lso gives Iarge_ effect_s here. All of these considerations Sug-
averaged dissipation through Kolmogorov's refined similar-9€St that ther_e Is no simple connection be’gwe.en Fhe statistics
ity hypotheses1]. In the present paper, we critically exam- of the multipliers and the statistics of the dissipation. In Sec.

ine the connection between the multipliers and the dissipa-’ we argue, however, that it is no accident that the case

tion. We have nothing new to say about the refined similarityV"€NA =2 andA =1/2 gives exponents closest to those ob-

hypotheses and thus draw no new conclusions about the scél‘—ar\“Ed for the dissipation. In Sec. VI, we look at higher

ing properties of velocity differences. moments, and the relevance of Novikov's gap theorem to

Recently there has been renewed interest in this subjecti'.igh moiments of th? djssipation. Finally, in Sec. VI, we
This was stimulated by Novikov’E9] proof that the asymp- SUMmarize our conciusions.

II. MULTIPLIERS AND ENERGY DISSIPATION

"Electronic address: nelkinm@acf2.nyu.edu Consider a non-negative random fielk), which we call
TElectronic address: gustavo@funes.rockefeller.edu the rate of energy dissipation, but which is, in practice, the
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54 LIMITATIONS OF RANDOM MULTIPLIERS IN ... 5101
one-dimensional surrogate(du/dx)?2, whereu(x,t) is the  E(x,r) is defined. Each of th&(x,r) participating in the
instantaneous component of the velocity. Introduce the to- ensemble will have been produced by an array of multipliers
tal dissipationE(r,x) in the interval of lengthr centered on

X E(r)
: sz(L/)\,A)M(L/)\Z,A)~-M(L/)\”,A). (7)
X+r/2
E(rx)=re(x)= jxfrlz €(s)ds. (1) Raising Eq.7) to the powemp and taking averages over the

ensemble, one finds
Consider two segments of lengtrandir, A\>1, embedded

one inside the other, and define the multiplier as <E((£))Z> =(M(L/\,A)PM(L/NZ,A)P- - M(L/N",A)P).
M A = ) @ ®
T E(NG X)) T

Equation(8) is correct by construction and entails no contra-
where the inequality ii2) derives from the non-negativity of diction. If now weassumethe validity of conditions(i) and
the underlying fielde(x) and the parametek, defined by (i), then, as Novikov has shown, the scaling of the moments
of M is ensured, that igM (\,A)P)=\"P2) "and we are led
X=X to the conclusion that

A=y © ]
re . . <E(r) >:)\V(D,A), 9)
presents the relative displacement of the two segments. E(L)P

A=+1/2 corresponds to the rightmost inner segment, while
A=0 means that the segments are centered at the sanahich, given that the moments &f(x,r) are independent of
point. In the above we have followed the notation of PNPA, can be true only ify(p,A) is A independenf13].
with the exception that their breakdown coefficients just The recent data of PNP, however, show that the value of
\ times our multiplieM. If the statistics of the multiplier are w«(2,A) is very sensitive to the paramet&r For A =2, their
universal, then they should be independent afhenr is an  value ofu(2,1/2) is 0.15, bug(2,0) is only 0.05(We thank
inertial range scale. The dependence of these statistics on tk&anni Pedrizzetti for sending us the numerical input data for
scale ration and the inhomogeneity parametkris the prin-  Fig. 7 of PNP and the corresponding data fo+ 1/2, which
cipal focus of this paper. is not explicitly given in the published papgiThis qualita-

Perhaps the most important result in the theory of multi-tive effect is clearly seen in Fig. 10 of PNP, but we empha-
pliers establishegl2] that a necessary and sufficient condi- size here that the effect is very large when expressed in terms
tion for the moments oM to scale as powers of (i.e., for  of the scaling exponents. We were surprised to find the effect
scale similarity, so large, so we examined the data of Sreenivasan and Stolo-

vitzky used in[14] and found an effect of similar magnitude.
(IM(r,\,A)]P)=\7PA), 4 It follows from the previous discussion that either condi-

. . ] o tion (i) or (i) above must be violatefifor if they held,
s that (i) the '?DF ofM(r.A,A), P(M:r.),A), is indepen- v(p,A) should beA independent In fact it was shown in
dent ofr and (ii) [14] that multipliers at subsequent scales are not independent

(M(r A ghg, APY=(M(r A, APYM(r A1, N g, A)PY. [were they independent, conditidin) would obtair] and the

(

direct violation of condition(ii) was established by PNP.
Strict scale similarity is thus ruled out. Further, the depen-
In Eq. (4), dence of the scaling exponents of the multipliersiomakes
the connection between these exponents and the ones corre-
y(P,A)=u(p,A)—p (6)  sponding to dissipation even more tenuous. This suggests

i . that the theory of multipliers is not as useful as once thought
and the exponenig(p,A) are those defined by PNP. If strict explain the statistics of the dissipation.

scale similarity applies, then the exponenggp,A) and To what extent can the theory of multipliers be used to
©(p,A) defined by(4) and(6) should be independent of the gyplain issues regarding the dissipation? We shall see that
scale ratio. We consider this question further in Sec. IV.  there are situations in which the multipliers are useful tools,
If conditions(i) and(ii) above hold and the fluctuations in eyen though in these cases the argument is less direct than it
the dissipation averaged over a large sdalare relatively \yoy|d be if condition(ii) were fulfilled. One such situation is
small (a reasonable and customary assumpfithen one  gescribed in Sec. V in relation to the intermittency exponent.

expects that the scaling exponents defined by the multiplierg t first we discuss a few properties of multipliers.
and those defined by the dissipation should be the same. As

the scaling exponents for the dissipation must be indepen-
dent of A, we conclude that under these assumptions
u(p,A) should be independent @f. Let us justify this last In spite of the inability of the multipliers to describe sev-
statement. In each realization of an ensemble of turbulerdral aspects of the dissipation statistics, the theory of multi-
flows, we measur&(x,r) at a fixedx and all the multipliers  pliers is interesting in itself, both in the context of turbulent
having a fixedA and\ that connect a mother intervéfixed  flows and in the context of stochastic processes in general.
in space at scaleL with the daughter interval on which Thus it is worth understanding physically some of its prop-

Ill. FURTHER PROPERTIES OF THE MULTIPLIERS
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erties, such as the statistical dependence of the multiplierand
on the one hand, and the dependence, on the other hand.
We shall also show in this section that there is a relation E(r,x)=M(r,3,0E(3r,x), (14)
between these two properties.

Let us first concentrate on the dependence between muf
tipliers. In Ref.[14] it was shown from atmospheric turbu- _ 2 2
lence data that fox =2 and|A|=1/2 (denoted in what fol- (M(r.3,~ I2E(3rx)%)>(M(r,3,0E@rx)%, (19
lows by A= *1/2) a systematic statistical dependence exist§rom which it follows naturally that the statistics of
betweenM(r,2,=1/2) andM(2r,2,+1/2). [For clarity in  M(r,3,—1/2) andM(r,3,0) are different, that is, there is a
the notation, we keep track of the scale in the multiplierA dependence.
through the first argument ikl (r,\,A), even though as dis- |t is interesting to observe that any multiplier correspond-
cussed in[14] the multiplier distribution is independent of ng to a givenA can be factorized as the product of two
r at the scales CO”Sider@&peCiﬁca”y, the conditional PDF mu|tip|iers Corresponding ta==+1/2. To perform this de-
P(M(r,2,21/2))M(2r,2,+1/2)) for 0<M(2r,2,£1/2)  composition we introduce an intermediate stage in going
<1/2 is narrower (has a smaller variangethan for  from the big interval of lengthr to the smaller interval of
1/2<M(2r,2,£1/2)<1. This dependence is related to the |engthr. For the intermediate interval, the right extreme co-
more physical dependence Bf(r,2,=1/2) onE(2r,x), the  incides with the right extreme of the large segment and the
latter being the total dissipation in the parent segment ofeft extreme coincides with the left extreme of the small in-

length . One interesting feature noticed [ib4] is that the  terval. This intermediate segment has a length, where
conditional PDF ofM(r,2,=1/2) givenE(2r,x) tends to-

wards an asymptotic form for high valuesB§2r,x). Even AN=[(A+D)i-(A—1)A]. (16)
though this feature was shown to hold experimentally only

for |[A|=1/2 and\ =2, one can argue that this trend should Then the multiplier linking the largest segment with the
be valid for arbitraryA and\. An explanation for this can be smallest one can be written as the product of the multiplier
given in terms of a similarity argument. Consider the condi-linking the largest segment and the intermediate one times
tional moments(M(r,\,A)9Re) of the multipliers given the multiplier linking the intermediate segment with the
the local Reynolds number RerE(r,x)¥3¥v. It is reason- smallest one. The first multiplier corresponds Ao=1/2,
able to expect that for a given, this statistics has to be while the second one corresponds Ae= —1/2. Therefore
universal(independent of viscosijyfor sufficiently large lo-  one can in general write

cal Reynolds number and therefore the Rependence has

to subside. But for a fixed scale, the local Reynolds number M(r,N,A)=M(N1F NN L2M(r Ny, —1/2). (17)
depends only orkE(r,x), and we conclude that th&(r,x)
dependence has to disappear when this quantity assum
large values. This feature of the multipliers is important in
the analysis of the asymptotics of the scaling exponents

high-order moments of the dissipation, as will be seen i he ind d b ftinli i
Sec. VI. An experimental assessment of this conjecture wilf€ independence between multipliers, assumpitioof Sec.
II, and local isotropy(which ensures that the statistics of

have to await further work. The statistical dependence be-’ )
tween multipliers was also demonstrated for the chsed 2 =1/2 andA=—1/2 are the samewe obtain that
by PNP.

Let us now turn to theA\ dependence of the multipliers.

This dependence was originally proposed by Novikdy, ¢, any p, which shows that the moments BF(r,\,A) and
who also explained its physical origin. Novikov’s argumentM(r \,1/2) are the same for any and any scale. The un-

is worth recalling. Consider an interval of length 8entered 5 gigable conclusion is that independence between multipli-
at x. The total dissipation in such interval is ers implies independence af

The picture that emerges is that dependence between mul-
tipliers and dependence dnare linked. Since tha depen-
ence was shown to be expected from Novikov's arguments
iven above, it follows that a dependence between multipli-
ers is to be expected. Furthermore, as discussed in Sec. Il, a
dependence between multipliers implies the breakdown of
scale similarity.

e obtain from the previous inequality that

ggis clear that a similar factorization can be achieved if we

go first to the left and then to the right.et us now assume
at M(Aqr,A/Ny,=1/2) andM(r,\;,*1/2) are indepen-

fent. Raising Eq(17) to the powemp, taking averages, using

(M(r,\,A)Py=\7P12 (18)

E(3r,x)=E(r,x—r)+E(r,xX)+E(r,x+r). (10

Since the dissipation autocorrelation function is observecg
[15] to decay monotonically with separation distanceit
follows that

(E(r,x—=n)E(r,x))>(E(r,x—r)E(r,x+r)) (12

and therefore IV. DEVIATIONS FROM SCALE SIMILARITY
If the scaler is in a universal inertial range, the moments
(E(3r,x)E(r,x))>(E(3r,x)E(r,x—r)). (12)  of the multipliers do not depend on but dependence among
the multipliers may lead to a deviation from scale similarity.
Recalling that To express this deviation, we generalize &).to

E(r,x—r)=M(r,3,— 1/2)E(3r,x) (13 ([M(r,\,A)TP)=\YPAA)] (19
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where of Sec. Il, one can compute this exponent from the theory of
multipliers. It is worth recalling how this is done. As seen
Y(P, N, A)=u(p,N,A)—p, (200 pefore, the assumption of independence makes the statistics

, of the multipliers independent of. Let us choose a scale
and the exponenta(p,\,A) are the same as given by PNP. \oiiq ) and writeE(r), wherer =L/\X as a telescopic prod-
The observed variation of these exponents with scale ratigq; of multipliers:

N\ for A=0 is given in Fig. 7 of PNP. Using the same data
set, we calculated the generalized dimension
E(r,x)=E(L,x")M(L/X\,N\)M(L/NZN)---M(L/NKN).

M(pf\iA) (21) (23)

D(p,\,A)=1—
as a function ofp for various values ok whenA=1/2. A  Raising Eq.(23) to the powerp, using independence and
significant dependence on scale ratio is observed for all vaiscale similarity, and taking averages one finds that
ues ofp.

First we ask if this observed dependence is consistent P P p\k
with earlier published results. One of the tests done in the (E(rx)P)=(L{e)XM(r.\)P)
past regarding scalg similarity was the check thaF the _multi- :(L<€>)p(r/L)—IogA(M(r,)\)p>' (24)
plier PDF forA =2 did not depend on scalé4]. While this
seems to be the case to a good approximation for inertial

range scales, the strict scale similarity represented by4tq. where we have used th&(L,x')=Le (x')~L(€). Com-
demands more stringent tests. Chhabra and Sreeniy8%an paring Eq.(24) with Eq. (22), we find that the intermittency
studiedD(p,\) for several values ok. They were able to  exponent is given by

extract a scale ratio independei{ta) from their data, but

they did this by adding @-dependent prefactor to E¢L9).

Their curves foD(p,\) before this prefactor was extracted p=2+log([M(r,\)]?). (25
look qualitatively similar to those we obtained from the data

of PNP[18]. The use of gp-dependent prefactor is equiva- o

lent to assuming a particular functional form for the depen-MOSt measurements gi from the multipliers have been for

dence of the scaling exponents on scale ratio. It does ndt=2 and A=1/2. Until recently these have also given
eliminate the deviations from scale similarity. u~0.25. However, as mentioned in Sec. Il, the recent data
We next ask if there is any simple physically based wayf PNP show that the value g from Eq. (25) is very
to model the dependence of the exponents on scale rati§eNsitive to the parametek. For A=2, their value of
PNP have given an accurate empirical fit in whighis a ~ #(2,1/2) is 0.15, bu(2,0) is only 0.05. The “universal
linear function of Ifiln(\)]. An alternative possibility is that ntermittency exponent obtained from the multipliers is much
the dependence on scale ratio vanishes when the scale rafig12ller when the subinterval is centered on the larger inter-
becomes large. From Figs(a and 8b) of [12] it is seen that Val than when it is at the end of the interval. This can be
the dependence gf(p,\,0) on\ does not vanish for large understood on the basis on the following nonrigorous argu-
values of\. The corresponding data fqu(p,\,1/2) [19] ment. One would like to show, for example, that the variance
show a similar behavior. The dependence dnremains °f M(r,2,~1/2) is greater than the variance bf(r,2,0).
strong even for large values af, however, and the expo- This would be ensured if one shows that such is the case for

nents bear no simple relation to those for the dissipationin® conditional second moment given the dissipation in the

Thus, though it is tempting to assume that the statistics of thBarent interval. To do this consider an interval of length 4

multipliers approaches the statistics of the dissipation whegentered orx and divide this interval into four subintervals

the scale ratio is large, there is no experimental informatio®f l€ngth r centered onx—3r/2, x—r/2, x+r/2, and

to support this assumption. X+ 3r/2_. The mqupller forA=—-1/2 corre§ppnds to the sum
After having reviewed and presented some different ma®f the first two subintervals and the multlpher fAr;O cor-

terial on properties of the multipliers, we now describe a few/€SPonds to the sum of the second and third subintervals. The

cases where one can establish a relation between the Statj:gtference in the mean-square multipliers for these two cases

tics of multipliers and that of the dissipation. is given by
V. INTERMITTENCY EXPONENT E(r,x—3r/2)+E(r,x—r/2) 2 -
Since the work of KolmogoroV1], the parameter used as E(4r,x) (4r,x)
the signature of small-scale intermittency is the so-called in- E(r X—1/2)+ E(r x+1/2) 2
termittency exponent, defined by _<( ' E AT ' E(4r,x)>. (26)

(E(rx)?)=(e)*(r/L)? ~. (22

The experimental situation for this exponent has been ref we expand the above expression and add and subtract the
viewed by Sreenivasan and Kailasnfih|, and the value of dissipation in the fourth subinterval, the desired inequality
w is typically about 0.25. Under the assumptidgisand (ii) can be rewritten in the form
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1 wherex=(r+1)/r as usual, we obtain
———[(E(r,x—3r/2)|E(4r,x))
E(4r.x) (E(r x—1/2)E(I,x+1/2))

—(B(r.x+1/2)|E(4r,%))] =([M(r,\,—1/2 = M(r A, — L/22]E(r+1,%)3). (33

1 . . .
+ S[(E(r,x—3r/2)E(r,x—r/2)|E(4r,X)) Assuming only at this point that M(r,\,—1/2) and
E(4r,x) M(r,\,—1/2)? are not correlated witE(r +1,x), we obtain

—(E(r X~ /2)E(r x+T12)|E(4r,%))] from Eq. (33) that

(E(r,x—=112)E(l,x+r/2))
(E(r,x+r/2)E(r,x+3r/2)|E(4r,X))

B! el 2n
:(L<E>)2<_ [<M(r!)\!_1/2)>
—(E(r,x—3r/2)E(r,x+ 3r/2)|E(4r,x))]>0. L

(27) —(M(r,\,—1/2)?)]. (34)

The difference in the first set of square brackets is likely toUsing that(M(r,\,—1/2))=1/x [valid under the assump-
be close to zero, as is the difference in the second set dfon of decorrelation between M(r,A,—1/2) and
square brackets, the latter because they are correlations He(r +1,x)] and equating Eq¢30) and(34), we obtain
tween nearest neighbors. However, the difference in the third _ _

. . s : 1 11 1\27# [1\27n
set of square brackets is most likely to be positive because it _ 2_ T _ i1 -
. ) : . (M(r,\,—1/2)%) + 1 +
is the difference between the correlation of nearest neighbors N2 02 A A
and second-nearest neighbors. If this is the case, the direction (39

of the previous inequality is justified and therefore the vari- , . - . .
ance gf M(r,2 _1(/12) i)s/ g:eater than the variance of which coincides with Eq(25) only for A =2. Stated briefly,

M(r.2,0) the only scale ratio for which the intermittency exponent can

Now, why is the intermittency exponent computed from be found without contradictions =2 andA =1/2, which

o . - - is the reason why the intermittency exponent computed for
the multipliers corresponding tA=1/2 so suspiciously . .
. these values of andA is close to the one computed directly
close to theuy measured directly, whereas the case0

gives a result that is quite different? We now show that therécrom the dissipation.
are strong reasons why the case 1/2 is the one that gives
the result closest to the one computed from the dissipation.

VI. BEHAVIOR OF HIGH MOMENTS

Noting that[16] One of the important results 9] and PNP concerns the
12 asymptotic behavior of the scaling exponeptép,A) for
X+r)e(x))= = E(r,x)2 28 large values op, which will be called here Novikov's gap
(e )€09) 2 d7r< (X)) 28 theorem. For completeness, let us rederive this theorem for

_ o _ . the multipliers (as opposed to for the breakdown coeffi-
and using(22), it is clear that the intermittency exponent cienty. Our starting point is the definition of the scaling
determines the correlation betwees(x+r) and e(x) exponents for the multipliersee Eq.(4)]

through
’y(qu):_Iog)\<M(r1)\1A)q>
r M
= 2 —_ 1
(eixtT)e())=Ae) (L) ’ (29 = “log, f M(r,\,A)IP(M;r N, A)dM |.
0
where A=(2—u)(1—w)/2. It can be easily shown from (36)
Egs.(1) and(29) that
Now assume that there is a gap in the multiplier distribution,
(E(r,x—=1/12)E(l,x+r/2)) that is,
S (L(e)? flp M;r,\,A)dM=0 (37)
—3 |r! L] = 1
2= o )
y r+l 2“_('_)2“_(1)2“ (30  Where 0<m<1. Then, from Eq(36) one finds that
L L L '
¥(q,4)=qlog, (1/m) (38)
On the other hand, given that
and
E(r+1,x)=E(r,x=1/2)+E(l,x+r/2) (3D Y(Q,A)
&= lim ——=log, (1/m)>0. (39
and q—oe

E(r,x—=1/2)=M(r ,\,—1/2E(r +1,x), (32 However, if there is no gam=1 and one has
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_ 1 1 1 and whose distribution has no gagy)~\"@, with
O0=<¢=<lim ( - a) log, (m*)qf . P(M:f.R,A)dM} v(q)/q—0 for highq. This means that ifMY) scales with
== m \, this scaling is at most sublinear. Therefore, recalling that

_ E(r)=re, [see Eq(1)], it follows from (45) that the asymp-

=| 1/m* 40 r
0G\(1/m™) 40 totic behavior of( e!)/( €'y for sufficiently largeq should be

for anym*. Thusé=0. (&%)
r J—

If the multipliers were independent at successive scales, =

[\d
F) (M(r,\,A)9E(l)—o0)~\Y@78 ~ )9,

then the previous result would imply that, if there is no gap (el g1

(as the experimental evidence sugggsts (46)
log [(E(r )N/ (L{e))] This line of argu_ment leads to basically the sameiconclusion
lim q =0. (41)  reached by Novikov, namely, the scaling(@)~r~9, and
9= not to (e ~r "9 with 0<h<1 as proposed for example in

the phenomenology of She and Levedd6]. The previous
line of reasoning has a caveat, however. In E&p), the
left-hand side is independent &f, whereas the right-hand

This is Novikov's resul{9], which purports to show that the
She-Leveque mod¢ll0] is inconsistent with experiment, as

it predicts that the right-hand side 641) is 1/3 instead of ;| . o >

0. However, as we have seen, the multipliers are depender’?tIde IS not, at leask priori. In order for our reasoqnmg to be

and this obscures any inference from the world of muItipIierstnS'Stem.’ one should have _th&M(r,l/r,A) ||6.'().()>
>|(¢€) be independent ok for sufficiently largeq. This is a

to that of dissipation. rp_rediction that has to be checked experimentally. In any

In order to take into account these cumbersome depe itis int i t tice that this ind d if ¢
dences, it is necessary to use conditional statistics. Basicall :emse, It 1s interesting to notice that this independence, It rue,
ould imply some constraints on the structures responsible

we are interested in the rat{&(r,x)9)/(E(l,x)9), which can for the most intense event
be rewritten in terms of the multipliers as or the most intense events.

(E(r)9) B 1 <E(I’)q > VIl. DISCUSSION AND CONCLUSIONS

- E(1)®
EMH ~(ED | EDIEDY
1 E(r)9
~(E(H) \ \ E(1)9 ties are sensitive to the paramet®r which describes the
) ) ) position of the subinterval of lengthin the larger interval of
For the remainder of this section we suppress the secongngthar. This observation is in agreement with the original
argument irE(r,x) for notational simplicity since it plays no - suggestion by Novikoy4], which we have reviewed in Sec.
role. We recognize in the previous equation thatj we then pointed out that this dependencedmstrongly

We have reviewed the statistical properties of the random
multipliers under conditions of strict scale similarity. We
started from the observation of PNP2] that these proper-

E(I)>E(I)q>. (42

E(r)/E(I)=M(r,l/r,A). Therefore we have that suggests that the multipliers for successive cascade steps
q . 1y must be statistically dependent, thus violating the conditions
w:f (M(r,I/r A)%E(I))D(E(I))id E() of strict scale similarity. In Sec. IV, we reviewed the direct
(ED  Jo Y (E(HY ' evidence for deviations from strict scale similarity and

(43 pointed out that this evidence is not in conflict with earlier
] ) ] experiments.
whereD (E(1)) is the PDF ofE(l). We are interested in the | sec. v, we examined the evidence on the “universal”
limit of q tending toee. In this limit, the kernel of the integral intermittency exponent and gave a physical argument in
_ q q support of the observation that this exponent should be
Q(E(D),a)=D(EUNEMYE(N)T) 44 Smaller forA=0 when the subinterval is centered on the

can be interpreted as a PDF since it is positive and integratddrger interval than fol =1/2, when it is at one end of the
to 1. It selects increasingly large values Bfl) asq be- larger interval. We also suggested that it is no accident that
comes larger. On the other hand, it is found from the analysi§arlier measurements fdr=1/2 and\ =2 gave a value of

of experimental datfl4] that the conditional distribution of # from the multipliers close to that observed directly from
M(r,2,+1/2), given E(l), becomes independent &(l) the statistics of the turbulent energy dissipation. In Sec. VI,
when this quantity is large enough. As we discussed in SedVe considered the behavior of high moments of the multi-
lll, a similarity argument suggests the conjecture that thé)her and the corresponding asymptotic behavior of the scal-
same result should hold valid for arbitraxyand A, namely, ~ INg exponents. We started from the observafib#i that the
that the statistics oM (r,\,A), given E(l), becomes inde- PDF of the multiplier, conditioned on the total dissipation in

pendent ofE(l) for sufficiently largeE(l). Therefore, as the parent interval, appears to be independent of this total
increases, Eq43) tends to dissipation when this quantity becomes large. From this ob-

servation, we were able to extend Novikov's “gap theorem”
(E(HHHEM T =(M(r,l/r,A)IE())>I(e). (45  [9] to the case when the multipliers are statistically depen-
dent. This theorem constrains the behavior of the scaling
(Notice that we have used th@t19 E) tends to be indepen- exponents of the multipliers to increase less rapidly than lin-
dent of E for large E.) Now, we have seen when we dis- early at high orders.
cussed Novikov's gap theorem in the beginning of this sec- Although the statistics of the multipliers remain an inter-
tion that for a random variabl® bounded between 0 and esting universal inertial range property of high Reynolds
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number turbulence, the arguments that we have given sugion of independence survive. This issue was considered in
gest that they bear no simple relation to the statistics of th&ef. [14], where it was suggested that the nature of the de-
local dissipation. In particular, we have shown that the dependence is such that only the region of the multifractal
viations from strict scale similarity, observed by PINE2], spectrum related to the negative moments of the dissipation
are to be expected theoretically. These deviations suggeist expected to differ noticeably from the equivalent region of
that the application of the theory of infinitely divisible dis- the spectrum computed assuming independence. On the
tributions to the multipliers by Noviko{@] is not appropriate  other hand, the part of the spectrum associated with the posi-
since this theory assumes independence between multiplietive moments computed from the multiplier PDF assuming
We also suggested that Novikov's gap theorem, which isndependence is expected to coincide with the spectrum
correct for the multipliers, cannot easily be extended to theeomputed directly, without the use of multipliers. It is in this
dissipation(or to the moments of velocity differengewith- latter sense that the dependence between multipliers was
out some subtle precautions. If our conjectytmsed on deemed benign in Ref14]. Finally, it is worth emphasizing
some experimental data and a similarity argumehiat that it might be possible to generate a multifractal spectrum
(M(r,\,A)9E(1)) tends to be independent B{l) for high  without an underlying random multiplicative process, and
values ofE(l) holds, Novikov's suggestion that his gap theo- even if such a process exists, it need not be characterized by
rem constrains popular mode]40] for the scaling of the the type of multipliers that we have studied here. Thus even
moments of the dissipation remains valid. though the “classical” description of scale similar multipli-
What is the connection between our results and the usuars has severe limitations, these limitations do not preclude
multifractal description of turbulent dissipatiph7]? As dis-  the validity of the multifractal picture of turbulent energy
cussed, for example, if2], the multifractal picture follows dissipation.
naturally from a multiplicative random process of indepen-
dent multipliers. Thus, from the knowledge of the multiplier
PDF and the assumption of independent, scale invariant
multipliers, the multifractal spectrum can be easily derived. We would like to thank Gianni Pedrizzetti and K. R.
However, we discussed in Sec. Ill that the multipliers are noSSreenivasan for their comments and criticisms at several
independent and then it is not at all clear which of the propstages of this work and for supplying prior to publication
erties of the multifractal spectrum derived from the assumpéata that supplemented the result§8h and[12].
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